BASIC ELECTRONICS

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016)

SEMESTER - 1	I/II	
--------------	------	--

Subject Code	15ELN15 / 15ELN25	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
ODEDITO 04				

CREDITS - 04

Course objectives:

The course objective is to make students of all the branches of Engineering to understand the efficacy of Electronic principles which are pervasive in engineering applications

Module -1	Teach
	ing
	Hours
Semiconductor Diodes and Applications (Text-1): p-n junction	06
diode, Characteristics and Parameters, Diode approximations, DC	Hours
load line analysis, Half-wave rectifier, Two-diode Full-wave rectifier,	
Bridge rectifier, Capacitor filter circuit (only qualitative approch),	
Zener diode voltage regulators: Regulator circuit with no load,	
Loaded Regulator. Numerical examples as applicable.	
Bipolar Junction Transistors: BJT operation, BJT Voltages and	
Currents, BJT amplification, Common Base, Common Emitter and	04
Common Collector Characteristics, Numerical examples as	Hours
applicable.	
Module -2	
BJT Biasing (Text-1): DC Load line and Bias Point, Base Bias,	04
Voltage divider Bias, Numerical examples as applicable.	Hours

BJT Biasing (Text-1): DC Load line and Bias Point, Base Bias,	04
Voltage divider Bias, Numerical examples as applicable.	Hours
Introduction to Operational Amplifiers (Text-2): Ideal OPAMP,	
introduction to Operational Ampiniers (Text-2): Ideal Of AMF,	
Inverting and Non Inverting OPAMP circuits, OPAMP applications:	
voltage follower, addition, subtraction, integration, differentiation;	06 Hours
Numerical examples as applicable.	

Module – 3	
Digital Electronics (Text-2): Introduction, Switching and Logic	10
Levels, Digital Waveform (Sections 9.1to 9.3). Number Systems:	Hours
Decimal Number System, Binary Number System, Converting	
Decimal to Binary, Hexadecimal Number System: Converting	
Binary to Hexadecimal, Hexadecimal to Binary, Converting	
Hexadecimal to Decimal, Converting Decimal to Hexadecimal, Octal	
Numbers: Binary to Octal Conversion. Complement of Binary	
Numbers. Boolean Algebra Theorems, De Morgan's theorem. Digital	
Circuits: Logic gates, NOT Gate, AND Gate, OR Gate, XOR Gate,	
NAND Gate, NOR Gate, X-NOR Gate. Algebraic Simplification,	
NAND and NOR Implementation (Sections 11.7 and 11.8): NAND	
Implementation, NOR Implementation. Half adder, Full adder.	
Module-4	
Flip-Flops (Text-2): Introduction to Flip-Flops (Section 12.1), NAND	05 Hours
Gate Latch/ NOR Gate Latch, RS Flip-Flop, Gated Flip-Flops:	liouis
Clocked RS Flip-Flop (Sections 12.3 to 12.5).	
Microcontrollers (Ref.1): Introduction to Microcontrollers, 8051	05
Microcontroller Architecture and an example of Microcontroller	Hours
based stepper motor control system (only Block Diagram approach).	
Module-5	
Communication Systems (Text-2): Introduction, Elements of	06 Hours
Communication Systems, Modulation: Amplitude Modulation,	Hours
Spectrum Power, AM Detection (Demodulation), Frequency and	
Phase Modulation. Amplitude and Frequency Modulation: A	
comparison.	
Transducers (Text-2): Introduction, Passive Electrical Transducers,	
Resistive Transducers, Resistance Thermometers, Thermistor.	04
Linear Variable Differential Transformer (LVDT). Active Electrical	Hours
Transducers, Piezoelectric Transducer, Photoelectric Transducer.	

Course outcomes:

After studying this course, students will be able to:

- Appreciate the significance of electronics in different applications,
- Understand the applications of diode in rectifiers, filter circuits and wave shaping,
- Apply the concept of diode in rectifiers, filters circuits
- Design simple circuits like amplifiers (inverting and non inverting), comparators, adders, integrator and differentiator using OPAMPS,
- Compile the different building blocks in digital electronics using logic gates and implement simple logic function using basic universal gates, and
- Understand the functioning of a communication system, and different modulation technologies, and
- Understand the basic principles of different types of Transuducers.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be **2** full questions(with a **maximum** of **four** sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer **5** full questions, selecting one full question from each module.

Text Books:

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- 2. D.P. Kothari, I. J. Nagrath, **"Basic Electronics"**, McGraw Hill Education (India) Private Limited, 2014.

Reference Books: MuhammadAli Mazidi, "The 8051 Microcontroller and Embedded. Systems. Using Assembly and C." Second Edition, 2011, Pearson India.